تحلیل و پیشبینی روزهای خشک با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: ایستگاه تهران)
نویسندگان
چکیده مقاله:
شبکههای عصبی مصنوعی بهعنوان یکی از تکنیکهای غیرخطی در مطالعات اقلیمی و هیدرولوژی اهمیت فراوانی بهخود اختصاص دادهاند. تغییراقلیم و بهدنبال آن گرمایش جهانی از پدیدههای اقلیمی به شمار میرود. شمار روزهای خشک و تداوم آن خشکسالی را بهدنبال دارد. در این پژوهش از دادههای بارش روزانه طی سالهای (1976-2008) و شبکه عصبی مصنوعی در نرمافزار MATLAB بهمنظور پیشبینی شمار روزهای خشک ایستگاه تهران استفاده شده است. شبکه بهکار رفته از نوع Feed-forward با الگوریتم کاهش شیب و مارکوارت لونبرگ در مرحله آموزش و یادگیری میباشد. ساختارهای گوناگونی در لایه ورودی و پنهان در مرحله آموزش مورد آزمایش قرار گرفت. در نهایت شبکه با 4 ورودی و 5 نرون در لایه پنهان و 1 نرون در لایه خروجی به مطلوبترین ساختار (1-5-4) جهت پیشبینی بهینه با بیشترین همبستگی پاسخ داد. نتایج نشان داد که در ایستگاه مذکور، روزهای خشک پیشبینی شده توسط شبکه در مقایسه با طول دوره آماری مورد بررسی دارای روند افزایشی بوده است که با محاسبه احتمال وقوع روزهای خشک، طی سالهای (2018-2009) با استفاده از زنجیره مارکوف، موارد فوق تأیید گردیده است. ضریب همبستگی مقادیر پیشبینی روزهای خشک بدون ترکیب با الگوریتم ژنتیک 86 درصد است. بعد از آموزش شبکه با ترکیب الگوریتم ژنتیک با لایههای مختلف این مقدار به 88درصد رسید که میتوان گفت در صورت ترکیب شبکه با الگوریتم مذکور نتایج قابل قبول ارائه میدهد.
منابع مشابه
تحلیل و پیش بینی روزهای خشک ایران زمین با استفاده مدل شبکه عصبی مصنوعی
بسیاری از پدیده های طبیعی- اقلیمی نظیر بارش از تغییرپذیری بالایی برخوردارند. این ویژگی در رخداد حالات مختلف بارش به خوبی نمایان است. یکی از این حالات، عدم رخداد بارش در امتداد زمان و طی روزهای سال است، که تداوم آن موجب بروز روزهای خشک و به دنبال آن پدیده خشکسالی می شود. در این پژوهش سعی شده است با نشان دادن تصویر کلی از مشخصات عمومی بارش در پهنه ایران، به پیش بینی روزهای خشک پرداخته شود. در پژو...
15 صفحه اولتخمین نفوذپذیری نهایی خاکها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
نفوذپذیری یکی از مهمترین پارامترهای فیزیکی خاکها و از دادههای بنیادی طرحهای آبیاری و زهکشی است. اگرچه برای توصیف این پدیده، تاکنون روشها و روابط مختلف تئوری و یا تجربی ارایه شده، ولی هنوز هم از جنبههای تطابق و امکان کاربرد علوم جدیدی نظیر روش شبکههای عصبی مصنوعی در پیشبینی این پدیده، جای تحقیق و بررسی وجود دارد. در تمام روشهای موجود برای تعیین روابط نفوذ، انجام آزمایشهای زمانبر و پر...
متن کاملمدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
متن کاملتحلیل مؤلفههای فرهنگسازمانی دانشمحور با استفاده از شبکه عصبی مصنوعی
این پژوهش به تحلیل مولفه های فرهنگ سازمانی دانش محور به منظور نیل به اثربخشی عملکرد با استفاده از شبکه عصبی مصنوعی میپردازد.پژوهش حاضر ازنظر نوع استفاده کاربردی است که با روش آمیخته اکتشافی انجامشده است. در تدوین ادبیات پژوهش با استفاده از روش بررسی اسنادی و نتایج حاصل از آن، مصاحبههای عمیق حضوری در چندین نوبت با 20 نفر از خبرگان دانشگاهی به عمل آمد. پس از ثبت مصاحبهها، دادهها به روش تحلیل...
متن کاملبرآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی
بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده ش...
متن کاملپیش بینی آبدهی متوسط ماهانه با استفاده از مدل تلفیقی شبکه عصبی مصنوعی و تبدیلات موجک (مطالعه موردی: رودخانه کر- ایستگاه پل خان)
آگاهی از اطلاعات دبی جریان در رودخانه ها برای مدیریت منابع آب، پیش بینی سیل، طراحی مهندسی و مدیریت زیست محیطی ضروری می باشد. مدل های ارائه شده همچون بارش-رواناب و سری های زمانی به منظور پیش بینی میزان آبدهی رودخانه ها به دلیل عدم دقت و پیچیدگی عوامل مؤثر در آبدهی در بسیاری از موارد با مقادیر مشاهده شده تطابق ندارد. موجک یکی از روشهایی است که در سالهای اخیر در زمینه هیدرولوژی مورد توجه قرار گرفت...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 21 شماره 60
صفحات 161- 167
تاریخ انتشار 2017-08-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023